Abstract Based on geostatistical modelling the authors compared relative sea level records for the Litorina and post-Litorina Sea with tide gauge and GPS derived crustal velocity measurements in Fennoscandia and in the Baltic region. Results show good fit between the geological record and GPS derived crustal velocity measurements indicating that the postglacial rebound (PGR) centre on the northwest coast of the Bothnian Sea and the isostatic zero-line in the southern Baltic remained stable during the last 8000 14C yrs BP (8900 cal yrs BP). An average Baltic Sea level rise of 1.4±0.4 mm/y for the 20th century was estimated, which is found to be at about one fifth compared to the mid-Holocene sea level rise. However, considering the recent estimates of eustatic sea level rise for the 21st century the slowly uplifting coastal areas in southern Sweden, SE Finland, Estonia, Latvia and NW Russia, which have experienced a long term relative sea level fall, will probably also be affected by future sea level rise reminiscent of the mid-Holocene one.

Keywords • Relative sea level • Tide-gauge measurements • Postglacial rebound • Litorina Sea • Eustatic sea level rise • Vertical crustal movements • Baltic Sea

INTRODUCTION
Melting of the Fennoscandian Ice Sheet changed the mass load on the continent and in nearby oceans, including the Baltic Sea and resulted in isostatic adjustments throughout the region. Records of relative sea level (RSL) change differ along place to place and also with time because of the interaction between eustatic sea level rise and postglacial rebound (PGR) processes. RSL has been studied in Fennoscandia based on geological records, such as RSL curve data (for summary Lambeck et al. 1998; Harff et al. 2005, 2011), and for the last few hundred years by tide gauge measurements complemented by repeated levelling (Ekman 1996, 2009; Kakkuri 1997; Douglas, Peltier 2002). Recently, continuous point positioning (time series of the coordinates) from the BIFROST (Baseline Inferences from Fennoscandian Rebound Observations, Sealevel and Tectonics) permanent GPS network also became available for determination of crustal velocities with respect to the Earth centre of mass (Milne et al. 2001; Johansson et al. 2002; Scherneck et al. 2002; Lidberg et al. 2007). In the current paper authors compare geological records of the relative sea level for Litorina and post-Litorina Sea with tide gauge and GPS measurement data by using geostatistical modelling. The aim of the geostatistical modelling is to reconstruct the changes in postglacial rebound for the last and still on-going brackish water period in the history of the Baltic Sea for a better understanding of recent and future RSL changes.

MATERIAL AND METHODS
For comparison of relative sea level change and GPS-derived vertical crustal movement models, the relative
Sea level records and crustal velocity measurement data were interpolated into different surfaces using Ordinary Kriging method (Olea 1999) with grid size of 2 x 2 km. Interpolations utilized the isotropic coordinate system Universal Transverse Mercator (UTM, zone 33 N). The geometry of the calculated RSL and PGR velocity surfaces was analysed using a terrain slope operator by software package SURFER.

The data on RSL change during the last 8000 14C yrs BP (8900 cal years BP) are based on 36 published shore displacement curves around Fennoscandia and Baltic region (Fig. 1, Table 1). Age-elevation data from the RSL curves were used to compile spatially interpolated RSL surfaces with 10-year intervals from 8000 to 0 14C yrs BP (Rosentau et al. 2007). Also, the terrain slope operator of the software package SURFER was applied for the RSL surfaces to calculate surface tilting gradients. From these models, time slices at 8000; 6500; 5000; 3500; 2000; and 500 14C yrs BP were selected and compared with GPS-derived crustal velocities and tide gauge measurements (Figs 1–3).

A map with the isobases (Fig. 1) of the recent postglacial rebound of Fennoscandia and Baltic region compiled initially by Ekman (1996) and improved by additional tide gauge measurements in southern Baltic Sea area by Rosentau et al. (2007) was used to reconstruct the relative sea level surface for the 100-year period (1892–1991). So called apparent uplift rates (relative to the mean sea level) on Ekman’s map were calculated from the sea-level and lake-level records combined with repeated high-precision levelling results and the uncertainty of these was estimated to be better than ± 0.5 mm/a in most cases (Ekman 1996; Lidberg et al. 2009).

The data of absolute vertical crustal movements (relative to geocenter), taken from Lidberg et al. (2007), represent a newly-improved 3D velocity field for the Fennoscandian PGR area. The continuous observations of station coordinates from the extended BIFROST GPS network with the longest time series, being over eight years, were used to estimate the velocity for more than 50 stations. The average uncertainty of vertical velocity was estimated to be ± 0.3 mm/y. The version ITRF2000 of the International Terrestrial Reference Frame (ITRF) was used to determine absolute crustal velocities relative to the geocenter of the Earth’s masses (ITRF web site, http://itrf.ensg.ign.fr/).

RESULTS AND DISCUSSION

Centre of the postglacial rebound and isostatic zero-line

Comparison of geological RSL model with tide gauge and GPS derived crustal velocity models (Figs 1-3) show similar NE–SW oriented elongated dome of the PGR. The area of Ångermanland, Sweden (site 12 in Fig. 1), is the area with the highest observed evidence of shore erosion in Fennoscandia since the last deglaciation (Berglund 2004). Geological RSL model shows that through the change of RSL surface, its maximum difference is located in the Ångermanland area reflecting the stable position of PGR centre (see Fig. 2). The GPS-derived crustal velocity model confirms this location for the present day conditions (see Fig. 3), although a shift of the PGR centre during the late Holocene has also been proposed (cf. Ekman 1996; Berglund 2004;
Linden et al. 2006). The latter opinion is based on tide gauge measurement data (Ekman 1996) suggesting the location of a PGR centre in the Bothnian Bay area (see Fig. 1), about 300 km northeast of the geological PGR centre (see Fig. 2).

However, there is no evidence or explanation for such a shift from the geological RSL data. Comparisons of shore displacement curves from this area show up to 30 m higher water level on the western coast of Bothnian Sea compared to the Bothnian Bay area (Fig. 4) and does not indicate any migration of the PGR centre from 8000 to 500 14C yrs BP (see Fig. 3). This is verified also by Fennoscandian ice sheet thickness models based on glacial rebound modelling of visco-elastic Earth in combination with palaeoshoreline data showing the thickest ice cover in the Bothnian Sea area during the Last Glacial Maximum (Lambeck et al. 1998; Svendsen et al. 2004). In the light of such deviation between rebound centres it is probable that some errors or unexplained phenomena exist in the tide gauge data. It is important to keep in mind that noise and sometimes gross errors or outliers are associated with observation data.

Based on the realistic uncertainty estimation and statistical methods the reliability of different data sources and derived models can be evaluated. For example, in the frame of an extensive analysis combining the data from precise levelling, tide-gauge recordings and time series from continuous GPS stations into one solution using Least Squares Collocation, Vestøl (2006) removed several statistically significant outliers from the geodetic data, including one tide-gauge station (Furuögrund) from the rebound centre area.

To explore the extent of the area of PGR it is also interesting to follow the position of the isostatic zero-line at different time periods. In Fig. 5 authors compared the RSL data at 8000 14C yrs BP with the recent crustal movements (absolute velocities from GPS network) and tide gauge measurements (apparent velocities) along the SW-NE oriented transect crossing the GPS stations. The measurements of apparent velocities place the isostatic zero-line in the southern part of the Baltic Proper about 100 km further north compared to data from vertical GPS velocities. The northern location of this so called “apparent zero-line” is caused most probably by the eustatic sea level rise and geoid surface change.

The signal from the eustatic sea level change is generally prevailing, thus for localization of isostatic zero-line relative to the geocentre in geological past an eustatic sea level history needs to be reconstructed for that time. Nearest estimation for eustatic sea level
outside of the Baltic Sea basin is from Kattegat area indicating a sea level 15 m b.s.l. at 8000 14C yrs BP (Mörner 1976). Within the Baltic Sea the eustatic sea level at c. 13 m b.s.l. at 8000 14C yrs BP was recently estimated for the isostatically stable area in the Darss Peninsula (Lampe et al. 2011; Harff, Meyer 2011) which corresponds well with Mörner’s (1976) estimation. If the estimated eustatic sea level of about 15–13 m b.s.l holds true, it can be concluded that the zero-line remained rather stable in southern Baltic during the past 8000 14C yrs BP (see Fig. 5).

Differences in land uplift

Calculated shoreline tilt gradients for Fennoscandia and for the Baltic region indicate that the area between the PGR centre and the zero-line tilts rather unequally because of the differences in ice loading. These gradients show highest tilt in the areas of SW Finland and along the Norwegian coast (Fig. 6). In SW Finland the tilt of the Litorina shoreline at 8000 14C yrs BP reach up to 0.3 m km\(^{-1}\) and decrease to 0.2 m km\(^{-1}\) at 6500 14C yrs BP. This is in good accordance with estimated tilt gradients based on correlations of shoreline features of the Litorina Sea in the Helsinki area (Hyvärinen 1982). A gradient of 0.2 m km\(^{-1}\) for a 6500 14C yrs BP old shoreline can also be calculated by using the two detailed shore-displacement curves from Olkiluoto–Pyhäjärvi and Tammisaari–Perniö areas from the same region (Eronen 2001).

In the areas of lower land uplift the tilt of shorelines has been estimated by correlation of transgressive shoreline features. Svensson (1991) found that in the Oskarshamn area (SE Sweden) transgression shoreline of the Litorina Sea at 6500 14C yrs BP has a tilt of 0.14–0.12 m km\(^{-1}\), while Saarse et al. (2003) show that the transgression shoreline of the Litorina Sea in Estonia tilt 0.13 m km\(^{-1}\). Correlation of transgressive shoreline features may sometimes lead to overestimation of the shoreline tilt due to the time-transgressive nature of such shorelines (cf. Teller 2001). However, authors estimation of the shoreline tilt (see Fig. 6) fit relatively well with the estimation by Svensson (1991) and Saarse et al. (2003) indicating no evidences of time-transgressive nature of Litorina Sea shorelines.

Shoreline tilt gradients also decrease with time as a result of the slow-down of the land uplift. Time-gradient curves show that decrease in tilting is first nonlinear (exponent-like), but later during the last 3000 14C yrs BP almost linear (Fig. 7). Such decrease in tilting refers to the deceleration of the land-uplift process and its later turn into fairly steady state. In
glacial isostatic adjustment (GIA) modelling the Earth described as viscoelastic Maxwell body displays both solid and fluid behaviour, so that at short timescale the material responds as if elastic, and at long timescale it flows as a viscous flow (Lambeck, Johnston 1998). The rapidly decreasing curve quite after the Last Glacial Maximum shows quick elastic rebound effect, later on the viscous relaxation prevails, showing decaying relaxation process.

Comparison of shoreline tilt gradients in the geological past (Figs 6-7) and present (see Fig. 1) shows that 65% of the uplift between 8000–0 14C yrs BP occurs during the first 4000 14C yrs BP while around 0.3% during the last century. Some shoreline tilt gradient curves show episodes where decreasing (negative) trend is replaced with increasing (positive) trend during the first half of the Litorina Sea phase (Fig. 7). These anomalies could be associated with local events like short-term transgression events induced by increased westerly atmospheric circulation, irregularities in isostatic uplift or imply to the errors in the shore displacement curve data.

Eustatic sea level rise and climate change

A rough estimation of the average Baltic Sea level rise for the 20th century can be made by subtracting the relative sea level rates from the crustal uplift rates. The average sea level rise of 1.4±0.4 mm/y for the Baltic Sea along the SW–NE profile (Fig. 5) was calculated using models presented in Figs 1 and 3. This difference is affected by the uplift of the geoid surface (about 6% of absolute uplift value, see Vestol 2006), so that estimated eustatic sea level rise is a little bit lower than the figure above.

Although the geoid surface is rising +0.6 mm/y in the rebound centre, its influence on the aforementioned difference over the Baltic region is mostly some 0.1 mm/y. This rate of recent sea level rise is, however, at about one fifth than at the time at the beginning of the Litorina Sea at about 8000–6500 14C yrs BP when the last remnants of the continental ice sheets melted in Northern Hemisphere and sea level rose with an average rate of about 6 mm/year (Lampe et al. 2011). This rapid sea level rise caused transgression also in areas of moderate land uplift in southern Sweden, SE Finland, Estonia, Latvia and NW Russia and led to

If the global warming will continue and the average air temperature will rise a few degrees (supposed estimate range is from 1.4°C to 5.8°C) within the 21st century as proposed by IPCC (2007) the eustatic sea level would quickly respond with acceleration and transgressive areas may expand. Jevrejeva et al. (2012), based on a new generation of climate change scenarios (Moss et al. 2010), have shown that recent global sea level acceleration continues over the 21st century even after stabilization of radiative forcing and that sea level will rise 0.57 m for the lowest predicted forcing and 1.10 m for the highest forcing by 2100. If these recent estimations hold true, the rate of sea level rise for the 20th century was estimated, which is found to be at about one fifth compared to the mid-Holocene sea level rise. Recent estimations of eustatic sea level rise indicate that sea level rise accelerates during the 21st century to the comparable level as it was in mid-Holocene. As a result the slowly uplifting coastal areas in southern Sweden, SE Finland, Estonia, Latvia and NW Russia which have experienced long term relative sea level fall will probably also be affected by future sea level rise reminding of the mid-Holocene one.

Acknowledgements

This study was supported by the Estonian Science Foundation (Grant Nos. 7294, 9011) and German Research Foundation (Project SINCOS, Grant No. FOR 488). Authors thank Professor Svanve Björck (Lund) and Dr. Boris Wintherhalter (Espoo) for their helpful reviews of this paper. Dr. Ricardo A. Olea (Reston) is thanked for improving the language.

References

Badyukov, D. D., Kaplin, P. A., 1979. Izmeneniye urovnya morya na poberezhye dalnevostochnyk h arkticheskikh morei SSSR za poslednie 15,000 let (Changes in the sea level at the coasts of Far Eastern and Arctic seas of the USSR during the last 15,000 years). Okeanologiya 19, 674–679. [In Russian].

Grönlie, A., 1981. The late and postglacial isostatic rebound, the eustatic rise of the sea level and the uncompensated depression in the area of the Blue Road Geotraverse. *Earth Evolution Science* 1, 50–57.

Hafsten, U., 1983. Shore-level changes in South Norway during the last 13,000 years, traced by biostratigraphical methods and radiometric datings. *Norsk Geografisk Tidsskrift* 37, 63–79. http://dx.doi.org/10.1080/00291958308552089

